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Stabilisation of the orientational glass phase by cubic 
anisotropy 

H - 0  Carmesin 
Institut fur  Physik, Johannes-Gutenberg-Universitat Mainz, Postfach 3980, D-6500 Mainz, 
Federal Republic of Germany 

Received 11 April 1988, in final form 18 July 1988 

Abstract. Though mixed crystals can form orientational glasses, the short-range model of 
the isotropic quadrupolar glass does not have a glass phase in three dimensions at non-zero 
temperature. A Monte Carlo investigation is presented which suggests that the glass phase 
is stabilised by cubic anisotropy. 

1. Introduction 

There are mixed crystals that can form an orientational glass. Examples are 
K(Br),(CN),-, (see Knorr 1987) and (N2),Ar1-, (Barret and Meyer 1964, Press et a1 
1982). 

These systems have been modelled as quadrupolar glasses with bond disorder 
(Goldbart and Sherrington 1985, Carmesin and Binder 1987). These authors considered 
a simple cubic lattice in d dimensions ( d  = CO in the mean-field case) with a uniaxial 
quadrupole on each site. Each uniaxial quadrupole is presented by a unit vector, s,, 
that orients freely in m dimensions. The quadrupole tensor is 

f l u  = sl”si”. (1.1) 

Two particles interact with the scalar product of tensors: 

The total energy is 
N 

H = c J&,. 
i<j 

Here Jg  is distributed via a Gaussian with zero mean: 

(1.3) 

A Monte Carlo (MC)  investigation of the isotropic quadrupolar glass with nearest- 
neighbour interaction suggests that the lower critical dimension is larger than three 
(Carmesin and Binder 1987). Presumably, the above isotropic model cannot describe 
the above-mentioned orientational glasses, KBr,(CN),-, and Ar,( Nz),-,. 
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Here we present a MC investigation of the cubic anisotropic quadrupolar glass 
(CAQG) for m = d =3. This model is defined by (l.l), (1.3) and (1.4) and by the cubic 
anisotropic two-particle interaction: 

(1.5) 

In the mixed crystal K(Br),(CN),-, there is a cubic anisotropy because, below the 
freezing temperature of the translational degrees of freedom and above the freezing 
temperature of the orientational degrees of freedom, it forms the cubic NaCl structure. 
Below the freezing temperature of the orientational degrees of freedom, at least the 
topology of the NaCl structure is conserved. 

The mixed crystal (Nz)xArl-x forms a FCC or a HCP structure. Thus there exists a 
global anisotropy and, though this is not the cubic anisotropy, it might have similar 
effects for the orientational glass phase because both anisotropies are caused by the 
crystalline structure. 

The simulations were performed on a VP 100 vector computer with the checkerboard 
algorithm. We obtained a speed of more than 0.5 x lo6 updatings per second. The 
whole calculation took about 200 h of CPU time. At high temperatures simple cubic 
lattices of size 123 were investigated and 80-500 bond averages were taken. At lower 
temperatures we simulated a simple cubic lattice of size 183 and took 20 bond averages, 
having the same statistics because there are more bonds in a larger lattice. 

As the correlation length was only of order two at all the temperatures we investi- 
gated, we did not make a finite-size analysis. We investigated the time-dependent glass 
susceptibility to be sure that we obtained the static value of the glass susceptibility. 

2. Static properties 

While the unit vectors are distributed isotropically in the isotropic quadrupolar glass, 
as long as there is no spontaneous breaking of the global symmetry of the Hamiltonian, 
the particles are not distributed isotropically in CAQG because the Hamiltonian itself 
breaks the global symmetry. Therefore we investigate the one-particle distribution 
function: 

with 

.=(;) xZ+yZ+zZ= 1 

where ( ) T  is the mean over the canonical ensemble, ( ) N  is the mean over the particles 
and ( 

We describe the one-particle distribution function by its moments. These are the 
expectation values of some products of the components of s: 

is the mean over the Gaussian distribution of the bonds. 

(x a b c  y z ) p  = P(s)x“ybz‘  ds( ds)-’. 
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As the quadrupolar Hamiltonian is invariant after a rotation of all unit vectors through 
an angle T, the moments are also invariant after that rotation. Thus a, b and c in (2.3) 
are even for non-zero moments. We call the sum a + b + c the order of the moment. 

We obtain three independent moments up to sixth order (Carmesin 1988b): 

q 4 1 =  5(x4 + y4 + z ' ) ~  - 3 

q61 =7(x6+y6+z6)p-3 (2.5) 

(2.4) 

(2.6) 2 2 2  
q62 = 1 0 5 ( ~  y Z ) p  - 1 

with 

q41(  T =  00) = q61( T =  00) = q62( T =  00) = 0. (2.7) 

If we require the unit vectors to be directed along the axes, our model, ( l . l ) ,  

2 (2.8) qqP;tts = 

qgqotts = 4 (2.9) 

,Etts = -1.  (2.10) 

(1.3)-(lS), describes the Potts glass. For the Potts glass the three moments are 

If the temperature is lowered, the one-particle distribution of CAQG approaches 
that of the Potts glass continuously; see figure 1. All data in figure 1 (except those at 
zero temperature) come from MC simulations which are taken from (2.8)-(2.10). 

The mean-field free energy of CAQG contains a term of an order parameter due 
to anisotropy (Carmesin and Ohno 1988). This order parameter is exactly the leading 
moment of the one-particle distribution function. This order parameter has got one 
replica index only and thus it describes a global breaking of symmetry, i.e. the mean 
over the volume and the bonds of the mean over the canonical ensemble of x4 is 
non-zero at low temperatures. Thus figure 1 is in agreement with mean-field theory. 

- 'L-.-i,4LIl #+ 

0 1.0 2.0 
Temperature 

Figure 1. The three leading moments of the one-particle distribution function plotted 
against temperature. The circles show q 4 , ,  the triangles q 6 , ,  and the + signs q6*.  At high 
temperatures the quadrupoles are distributed nearly isotropically; they are mostly directed 
along the axes at low temperatures. At zero temperature the values for the Potts glass are 
plotted: qipI1' = 2, q6ppI*' = 4 and q;;'''= - 1 ,  while at all non-zero temperatures the Monte 
Carlo data for the cubic anisotropic quadrupolar glass are shown. 
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In order to equilibrate the system in the simulation, the system was cooled con- 
tinuously to the temperature under consideration. Initially, all the orientations were 
chosen at random. The temperature was lowered according to the following equation: 

(2.11) 

The statistical averages are taken for times larger than r*. 
At very low temperatures this procedure is not sufficient to obtain the equilibrium 

internal energy. We obtain approximations by an extrapolation that was first proposed 
by Grest et a1 (1986): 

E ( r )  = E(r*=CO)+constantx [I/ln(r*)]. (2.12) 

While in the Potts glass there is a point of inflection of the internal energy at the 
temperature 0.4 (figure 2) such a point could not be identified in the simulation of 
CAQG. In CAQG the energy at rather low temperatures rapidly decreases when the 
particles are preferentially oriented in the directions of the axes (see figures 1 and 2). 
CAQG lowers its energy more rapidly with falling temperature than the isotropic 
quadrupolar glass and the Potts glass. 

0.0 

-0 .2 

x 

01 
W 

p - 0 . 6  

-1.0 

Temperature 

-o.w[ , ,,”’ 

-1.10 -L -0.05 0 0.1 0 0.20 

l i l n ( t 1  
Figure 2. ( a )  The internal energy plotted against temperature for the cubic anisotropic 
quadrupolar glass, the isotropic quadrupolar glass (see Carmesin and Binder 1987), and 
the Potts glass (see Carmesin and Binder 1988). For low temperatures extrapolated values 
are also presented. The circles (large triangles) show the (extrapolated) energy of the Potts 
glass, the + signs ( x  signs) show the (extrapolated) energy of the isotropic quadrupolar 
glass, while the diamonds (small triangles) present the (extrapolated) energy of the cubic 
anisotropic quadrupolar glass. (6) For the case of the cubic anisotropic quadrupolar glass, 
the extrapolation of the internal energy for infinite time is demonstrated for several 
temperatures. The circles show the energy for T = 0.2, the triangles for T = 0.8, the + signs 
for T=0.05, the x signs for T=O.O3 and the diamonds for T=O.Ol. The arrows show 
the extrapolated energies. 

We consider two types of correlations (for a systematic discussion see Carmesin 
(1988a)). The total isotropic correlation was considered in the isotropic quadrupolar 
glass (see Carmesin and Binder 1987). It is the isotropic two-particle interaction 
subtracted by its value at infinite temperature: 

(2.13) 
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The diagonal correlation is the cubic anisotropic correlation, subtracted by its value 
at infinite temperature: 

(2.14) 

From each such correlation, we define the following correlation functions. The 
spatial correlation function is 

g ( r )  = C ~ ( ( ( c o r ~ ) ~ ) , r , - r ~ , = r ) ~ " .  (2.15) 

Here ( ) l r 8 - r , l = r  describes the mean over those pairs of particles that are separated by 
a distance r. We normalise this function such that for completely frozen, but isotropi- 
cally distributed, particles it is one (Carmesin and Ohno 1988). Thus we obtain 

C K p p  cg = 4. 
From the correlation function we obtain the quadratic susceptibility, which is the 
generalisation of the spin-glass susceptibility: 

(2.16) 

The overlap of two configurations a and b is 

In the MC simulation we investigate overlaps for total isotropic correlations (2.13) and 
for cubic anisotropic correlations (2.14) which are inserted for cor in the above equation. 
From this, the autocorrelation function and the glass order parameter are obtained: 

(2.18) 

The quadratic susceptibility for diagonal correlations as a function of temperature 
shows curvature on a log-log plot against temperature, and thus we are either above 
the scaling region and the lower critical dimension, d , ,  is above three (where for a 
zero-temperature transition one must get a straight line on such a log-log plot) or 
d , s 3 ,  figure 3(a) .  

If the system is at d , ,  we expect that 1 n X a  T-Y' ,  In [a T-Y' and In T a  T-""' with 
y ' = 2  and z 'v '=3 in the Ising spin glass (McMillan 1984). The susceptibility fits a 
straight line on a ln(1n x) against In T plot quite nicely, but y' = 2.3 rather than y' = 2 
suggests that the system might be above d , ,  figure 3 ( b ) .  We estimate the error bars by 
a very crude method: we fit a reasonable straight line with maximum slope and another 
one with minimum slope to the data points in figures 7 ( g )  and 3(b). From these we 
obtain y' = 2.3 i 0.3 and Z 'Y '  = 3.5 * 0.4. Figures 3( c )  and ( d )  show plots of the glass 
susceptibility against 1 - 0.1/ T and I - 0.2/ T respectively, and yield y = 15.21 and 4.35 
respectively. While y = 15.21 is likely to be too large, y = 4.35 is reasonable. 



302 

h .  c 
20- 

c n 

9 l o t  

- 8 
* .  
* 5 :  
W .  

H - 0  Carmesin 

I 
0.5 1 2 

Temperature 

3 

0 

F 

2 1  0 I 

L A -  

0.7 0.8 0.9 1.0 
1-0.1 I T 

a 
a 

Q 
a 

0 

'a 

a 

0.5 1 2 
Temperature 

0 

8 5  
0 

W 0 

2 [  , , , , , , , , , , , - , , , , , !  , , ;;Ij ~ , !  ~ 

1 

0.3 0.5 0.75 1 

1 - O . 2 I T  

Figure 3. ( a )  The glass susceptibility for diagonal correlations is shown as a function of 
temperature. The full curve is the result of a high-temperature expansion up to the order 
T-4 (Carmesin and Ohno 1988). The MC data agree with the expansion above the 
temperature T = 0.7, while below that temperature the expansion is much too small because 
higher-order terms are missing. One also has to keep in mind that it is still an open question 
whether the expansion converges at all (Bray 1987). ( b )  The logarithm of the glass 
susceptibility for diagonal correlations plotted against temperature. A linear curve in the 
above double logarithmic scale is consistent with the assumption that the critical dimension 
is three. (c )  The glass susceptibility for diagonal correlations plotted against 1 -0.1/ T. 
( d )  The glass susceptibility for diagonal correlations plotted against 1 -0.2/ T. 

From the correlation function for diagonal correlations, figure 4( a) ,  the correlation 
length is obtained by a fit to 

g ( r )  = exp(-r/5). (2.20) 

In figures 4(b) and (c)  6 is plotted against 1 - 0.1/ T and 1 - 0.2/ T respectively. This 
yields Y = 7.2 and 1.14 respectively. As Y = 7.2 is likely to be too large, while v = 1.14 
is reasonable, the correlation length as well as the glass susceptibility support the 
assumption of a non-zero transition to the glass phase at Tc=0.2. 

In order to investigate the linear response of the system, an external field, h, is 
applied which directs the particles along the z axis. The conjugated order parameter 
is zero at infinite temperature and thus is 

(2.21) 
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Figure 4. ( a )  The correlation function for diagonal correlations plotted for the temperatures 
T=0.25 (circles), T=0 .3  (triangles), T=0.35 (+ signs), T=0.4 ( x  signs) and T=0.45 
(diamonds) against the distance. At these short distances, the anisotropy of the lattice is 
still seen. At distance 2, for example, the values are relatively large compared to the 
distance vf?, as only two bonds connect particles with distance 2 while three bonds connect 
particles of distance vf?. The correlation function decays nearly exponentially. ( b )  The 
correlation length for the diagonal correlations plotted against 1 -0.1,' T. (c )  The correlation 
length for the diagonal correlations plotted against 1 - 0.2/ T. 

The Hamiltonian thus contains the energy due to the applied field: 
N 

H = JvHv - ho. 
i<j 

(2.22) 

The conjugated susceptibility is 

In the simulation, a field of strength 0.1 is applied. The linear response is approximately 
proportional to I /  T at high temperatures, while it 'saturates' near T = 0.2; see figure 
5 .  At high temperatures the particles move almost uncorrelated and thus the linear 
susceptibility is proprtional to 1/  T. At low temperatures the particles are correlated 
due to the onset of disordered correlations among the particles. These correlations 
are given by the glass susceptibility, figure 3 ( a ) ,  which indeed seems to have a singularity 
near T,=O.2. 
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Figure 5. The order parameter describing the directing of particles along the z axis, equation 
(2.32), is plotted against temperature. The applied field is &. While at high temperature 
the response is approximately proportional to 1/ T, it 'saturates' near 7 = 0.2. The full 
curve shows the result of the high-temperature expansion up to T - 3  (Carmesin and Ohno 
1988). 

3. Dynamics 

We consider the following decay laws for the autocorrelation functions for diagonal 
and total correlations. 

(i)  Logarithmic decay: 

q ( t )  a l o g ( t ) .  (3.1) 

q(  t )  a t-a. (3.2) 

(ii) Algebraic decay: 

(iii) Stretched exponential decay: 

q(  t )  exP[-( t /  7')y1. 
(iv) Enhanced power law (van Hemmen and Suto 1985): 

(3.3) 

q(  t )  aexp[-A In( t / ~ " ) ~ " ] .  (3.4) 

The autocorrelation function of diagonal correlations does not fit any of the first 
three considered decay laws, figures 6 ( a ) ,  (b)  and (c). As there is curvature to the 
upper left for large times in figure 6( c), the enhanced power law can be excluded as well. 

The autocorrelation function of total isotropic correlations fits neither to logarithmic 
decay, figure 7(a),  nor to algebraic decay, figure 7(b), but does fit to the stretched 
exponential at intermediate and late times, figure 7( c). 

Therefore, we extract the parameters y and 7' from the data. We integrate the 
autocorrelation time, 7, from the parameters obtained above: 

T =  lom q ( t )  d t  

= loE exp[-( t / ~ ' ) ~ ]  dt  

(3.5) 
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Figure 6. The autocorrelation function for diagonal correlations is plotted against time for 
several temperatures, for ( a ) ,  logarithmic decay, ( b )  algebraic decay, and (c )  stretched 
exponential decay. A straight line is expected in each case. In the figures 6 ( a ) - ( c )  and 
7 ( a ) - ( c )  the autocorrelation functions are plotted for the temperatures T = 1.0 (circles), 
T = 0.7 (triangles), T = 0.5 (+ signs), T = 0.4 ( x  signs), T = 0.35 (2 signs), T = 0.3 
(diamonds), T = 0.25 (Y signs), T = 0.2 (arrows) and T = 0.1 (X  signs). 

If y vanishes, then r must diverge. The function y is a linear function of temperature 
over a wide range; see figure 7 ( d ) .  If we extrapolate y ( T )  to zero, we find that y 
vanishes at T = 0.08. Thus r must diverge at T = 0.8 and therefore T = 0.08 is in the 
glass phase. Therefore consideration of y suggests that dl < 3 and T, > 0.08. We do 
not give an estimate for the error bars here, but we show in table 1 that the size of 
y (  T) is larger for the isotropic quadrupolar glass than for CAQG. 

Of course, T can diverge at higher temperatures than 0.08, as is obvious from (3.7). 
Therefore we consider r as a function of 1 -0.1/ T and 1 -0.2/ T in figures 7 ( e )  and 
( f )  respectively, which yields zv = 66 and 15.9 respectively. As zv  = 66 is very large 
for a dynamical exponent, T,=O.2 is more likely. We consider d l = 3  in figure 7(g). 
We find z ' v ' = 3 . 5 * 0 . 4 ,  which is larger than the value of 3 that McMillan (1984) 
predicted for the king model, and thus this plot also suggests d l<3 .  For the case 
dl > 3, McMillan predicted an Arrhenius law: 

T C C  exp( E /  T ) .  (3.8) 

Figure 7 ( h )  shows that this does not at all fit the data. 
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Table 1. 

Tirotropic 7cuhic anisotropic Yisotropic Ycuhic anisotropic T 

1.5 
1 
0.8 
0.7 
0.6 
0.5 
0.4 
0.35 
0.3 
0.25 

0.2 

0.15 
0.13 
0.11 
0.1 
0.09 

1 
1.23 
1.71 

1.07 
2.02 
5.44 

12.51 

101.4 

345.41 

1660.0 
3 603.0 

10910.0 

53 657.0 

3.78 
25.7 

114.2 
12 075.0 

1.427 x 10' 
(extrapolated slightly) 
6.77 x 10" 
(extrapolated strongly) 

0.57 
0.52 
0.483 

0.43 

0.41 

0.385 
0.375 
0.36 

0.67 

0.436 

0.35 
0.29 
0.25 
0.176 
0.14 

0.102 

0.034 

In order to compare CAQG with isotropic quadrupolar glass without any extrapola- 
tion, we present absolute values of the glass susceptibility and 7 for both glasses. One 
should recognise that the absolute strength of the interaction, which is measured by 
the variance of the two-particle interaction at infinite temperature, ((HU - 
(HU)T=m)Z)T=m, is larger for the isotropic quadrupolar glass [ 2 ( m  - l)/m'(m + l ) ]  than 
for CAQG [4(m - l)/m'(m +2)*]. From this one would naively expect that 7 is larger 
for the isotropic quadrupolar glass than for CAQG at the same temperature. 

4. Conclusions 

We saw that the data obtained from the MC simulation do suggest that there is a 
transition to the glass phase in three dimensions. But now we raise the question of 
how reliable this observed 'trend' really is. 

We first have to admit that a MC simulation can, in no case, yield a rigorous proof 
of the stability of any phase, because it is necessary to extrapolate the obtained data. 

Figure 7. The autocorrelation function for total isotropic correlations plotted against time 
for several temperatures (see caption of figure 6 for explanation of symbols in ( a ) - ( c ) ) .  
( a )  For logarithmic decay a straight line is expected. ( b )  For algebraic decay a straight 
line is expected. ( c )  A straight line occurs for a stretched exponential decay. ( d )  The 
exponent in the stretched exponential decay law, extracted from figure 7(c) ,  is plotted 
against temperature. (e )  The autocorrelation time, obtained from equation (3.7), 
plotted against 1 -0.1/ T. (f) The autocorrelation time, obtained from equation (3.7), 
plotted against 1 -0.2/ T. (g) The logarithm of the autocorrelation time, obtained from 
equation (3.7), plotted against temperature. ( h )  The logarithm of the autocorrelation time, 
obtained from equation (3.7), plotted against the inverse temperature. 
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On the other hand, even in the case of the Ising spin glass, in three dimensions T, can 
also only be obtained by methods which have to extrapolate the obtained data (Binder 
and Young 1986). We therefore raise three questions. 

(i)  How reliable is the estimate of the lower critical dimension? We do not exclude 
that dl is three, though the data suggest that it is lower. The data suggest more strongly 
that d,  is not larger than three, since if that was the case the critical exponents would 
be even larger than those we obtain for the assumed T, = 0.1, zv = 66 and y = 15.21. 
Additionally, the Arrhenius law does not fit T. 

Thus, from extrapolation of MC data, we conclude d,  s 3. If so, the quadrupolar 
glass phase is stabilised by cubic anisotropy, because from extrapolation of MC data 
obtained for the isotropic quadrupolar glass (Carmesin and Binder 1987, Carmesin 
1988b) we conclude that d,  > 3. 

(ii) How reliable are the numerical estimates of TI and the critical exponents? 
From the obtained MC data we do not dare to make an estimate of the value of T I .  
We only investigate the approximate critical exponents that the candidates of critical 
temperatures T, = 0.1 and T, = 0.2 would yield. Since a lower T would yield larger 
critical exponents, and additional MC data at lower temperatures than those investigated 
here would lead to larger critical exponents as well, we conclude that the approximate 
critical exponents that we obtain here are: (a) lower bounds for critical exponents, 
obtained at the suggested transition temperature, (b) lower bounds for the critical 
exponents for a transition at zero temperature, if d,  is larger than three, and (c) rough 
estimates of critical exponents, yielding the order of magnitude of the exponent for a 
given T,. 

(iii) What can we conclude from the MC data without any extrapolation? (a) We 
conclude that the available phase space shrinks dramatically with decreasing tem- 
perature (figure 1). (b) The specific heat is large compared to that of the isotropic 
quadrupolar glass and that of the Potts glass (slopes in figure 2(a)).  (c) The absolute 
values of T are larger than the values obtained for the isotropic quadrupolar glass, 

Table 2. 

2.0 
1.5 
1.2 
1 
0.8 
0.7 
0.6 
0.5 
0.45 
0.4 
0.35 
0.3 
0.27 
0.25 
0.2 
0.15 
0.13 
0.09 

1.21 
1.37 
1.6 

2.26 
2.35 
3.3 
4.19 

9.46 
10.11 
13.7 
22 
33 
79.5 

194.1 

1.05 
1.13 

1.26 
1.5 
1.6 
2.08 
3.8 
5.8 

10.0 
20 
52.1 
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though the variance of the two-particle interaction, (( Ho - (Hij)T=m)2)T=oor is 
2( m - 1)/ m'( m + 1) for isotropic interactions, but only 4( m - 1)/ m2( m + 2)2 for cubic 
anisotropic interactions (table 1) .  (d) The absolute values of the quadratic susceptibil- 
ity, which measures finite correlations above a possible glass transition temperature, 
are larger than those in the isotropic quadrupolar glass (table 2 ) .  (e) The absolute 
values of the phenomenological exponent y (  T )  are larger in the isotropic quadrupolar 
glass than in CAQG. (f) The autocorrelation times grow stronger than predicted by an 
Arrhenius law. 

In principle, there are two glass transitions possible in CAQG (Carmesin 1988a). 
At the temperature at which the diagonal correlations turn from zero to non-zero, one 
transition temperature is defined. At the temperature at which the non-diagonal 
correlations, i.e. the difference between the total isotropic and diagonal correlations, 
turn from zero to non-zero, another transition temperature is defined. In the analysis 
of the MC data it is assumed that these two temperatures cannot be distinguished. 

In vector spin glasses, for comparison, the glass phase is probably stabilised by 
the Dzyaloshinskii-Moriya anisotropy (Bray and Moore 1987, Kotliar 1987). 
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